Apple Machine Learning Research Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs’ internal states relate […]Continue reading

Apple Machine Learning Research We present RelCon, a novel self-supervised Relative Contrastive learning approach for training a motion foundation model from wearable accelerometry sensors. First, a learnable distance measure is trained to capture motif similarity and domain-specific semantic information such as rotation invariance. Then, the learned distance provides a measurement of semantic similarity between a […]Continue reading

Apple Machine Learning Research There is a gap between finding a first-order stationary point (FOSP) and a second-order stationary point (SOSP) under differential privacy constraints, and it remains unclear whether privately finding an SOSP is more challenging than finding an FOSP. Specifically, Ganesh et al. (2023) claimed that an αalphaα-SOSP can be found with α=O~(1n1/3+(dnϵ)3/7)alpha=tilde{O}(frac{1}{n^{1/3}}+(frac{sqrt{d}}{nepsilon})^{3/7})α=O~(n1/31​+(nϵd​​)3/7), […]Continue reading

error: Content is protected !!