AWS Machine Learning Blog Since launching in June 2023, the AWS Generative AI Innovation Center team of strategists, data scientists, machine learning (ML) engineers, and solutions architects have worked with hundreds of customers worldwide, and helped them ideate, prioritize, and build bespoke solutions that harness the power of generative AI. Customers worked closely with us […]Continue reading

AWS Machine Learning Blog Generative artificial intelligence (generative AI) models have demonstrated impressive capabilities in generating high-quality text, images, and other content. However, these models require massive amounts of clean, structured training data to reach their full potential. Most real-world data exists in unstructured formats like PDFs, which requires preprocessing before it can be used […]Continue reading

AWS Machine Learning Blog The financial service (FinServ) industry has unique generative AI requirements related to domain-specific data, data security, regulatory controls, and industry compliance standards. In addition, customers are looking for choices to select the most performant and cost-effective machine learning (ML) model and the ability to perform necessary customization (fine-tuning) to fit their […]Continue reading

AWS Machine Learning Blog Generative AI models have the potential to revolutionize enterprise operations, but businesses must carefully consider how to harness their power while overcoming challenges such as safeguarding data and ensuring the quality of AI-generated content. The Retrieval-Augmented Generation (RAG) framework augments prompts with external data from multiple sources, such as document repositories, […]Continue reading

AWS Machine Learning Blog Generative AI models for coding companions are mostly trained on publicly available source code and natural language text. While the large size of the training corpus enables the models to generate code for commonly used functionality, these models are unaware of code in private repositories and the associated coding styles that […]Continue reading

AWS Machine Learning Blog Visual language processing (VLP) is at the forefront of generative AI, driving advancements in multimodal learning that encompasses language intelligence, vision understanding, and processing. Combined with large language models (LLM) and Contrastive Language-Image Pre-Training (CLIP) trained with a large quantity of multimodality data, visual language models (VLMs) are particularly adept at […]Continue reading

AWS Machine Learning Blog Generative artificial intelligence is transforming how enterprises do business. Organizations are using AI to improve data-driven decisions, enhance omnichannel experiences, and drive next-generation product development. Enterprises are using generative AI specifically to power their marketing efforts through emails, push notifications, and other outbound communication channels. Gartner predicts that “by 2025, 30% […]Continue reading

error: Content is protected !!