AWS Machine Learning Blog Amazon SageMaker Canvas now empowers enterprises to harness the full potential of their data by enabling support of petabyte-scale datasets. Starting today, you can interactively prepare large datasets, create end-to-end data flows, and invoke automated machine learning (AutoML) experiments on petabytes of data—a substantial leap from the previous 5 GB limit. […]Continue reading

MIT News – Artificial intelligence The impact of artificial intelligence will never be equitable if there’s only one company that builds and controls the models (not to mention the data that go into them). Unfortunately, today’s AI models are made up of billions of parameters that must be trained and tuned to maximize performance for […]Continue reading

AWS Machine Learning Blog Amazon SageMaker JumpStart provides a suite of built-in algorithms, pre-trained models, and pre-built solution templates to help data scientists and machine learning (ML) practitioners get started on training and deploying ML models quickly. You can use these algorithms and models for both supervised and unsupervised learning. They can process various types […]Continue reading

AWS Machine Learning Blog We are excited to announce a new version of the Amazon SageMaker Operators for Kubernetes using the AWS Controllers for Kubernetes (ACK). ACK is a framework for building Kubernetes custom controllers, where each controller communicates with an AWS service API. These controllers allow Kubernetes users to provision AWS resources like buckets, […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In the process of working on their ML tasks, data scientists typically start their workflow by discovering relevant data sources and connecting to them. They then use SQL to explore, […]Continue reading

AWS Machine Learning Blog In January 2024, Amazon SageMaker launched a new version (0.26.0) of Large Model Inference (LMI) Deep Learning Containers (DLCs). This version offers support for new models (including Mixture of Experts), performance and usability improvements across inference backends, as well as new generation details for increased control and prediction explainability (such as […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Canvas allows you to use machine learning (ML) to generate predictions without having to write any code. It does so by covering the end-to-end ML workflow: whether you’re looking for powerful data preparation and AutoML, managed endpoint deployment, simplified MLOps capabilities, or the ability to configure foundation models for […]Continue reading

error: Content is protected !!