AWS Machine Learning Blog NVIDIA NIM microservices now integrate with Amazon SageMaker, allowing you to deploy industry-leading large language models (LLMs) and optimize model performance and cost. You can deploy state-of-the-art LLMs in minutes instead of days using technologies such as NVIDIA TensorRT, NVIDIA TensorRT-LLM, and NVIDIA Triton Inference Server on NVIDIA accelerated instances hosted […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Feature Store is a fully managed, purpose-built repository to store, share, and manage features for machine learning (ML) models. Features are inputs to ML models used during training and inference. For example, in an application that recommends a music playlist, features could include song ratings, listening duration, and listener […]Continue reading

AWS Machine Learning Blog Launched in 2021, Amazon SageMaker Canvas is a visual, point-and-click service for building and deploying machine learning (ML) models without the need to write any code. Ready-to-use Foundation Models (FMs) available in SageMaker Canvas enable customers to use generative AI for tasks such as content generation and summarization. We are thrilled […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Studio offers a broad set of fully managed integrated development environments (IDEs) for machine learning (ML) development, including JupyterLab, Code Editor based on Code-OSS (Visual Studio Code Open Source), and RStudio. It provides access to the most comprehensive set of tools for each step of ML development, from preparing […]Continue reading

AWS Machine Learning Blog Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at scale. SageMaker makes it easy to deploy models into production directly through API calls to the service. Models are packaged into containers for robust and […]Continue reading

AWS Machine Learning Blog Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and effortlessly build, train, and deploy machine learning (ML) models at any scale. SageMaker makes it straightforward to deploy models into production directly through API calls to the service. Models are packaged into containers for robust […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. Amazon SageMaker notebook jobs allow data scientists to run their notebooks on demand or on a schedule with a few clicks in SageMaker Studio. With this launch, you can programmatically […]Continue reading

AWS Machine Learning Blog Today, Amazon SageMaker launches a new version (0.25.0) of Large Model Inference (LMI) Deep Learning Containers (DLCs) and adds support for NVIDIA’s TensorRT-LLM Library. With these upgrades, you can effortlessly access state-of-the-art tooling to optimize large language models (LLMs) on SageMaker and achieve price-performance benefits – Amazon SageMaker LMI TensorRT-LLM DLC […]Continue reading

error: Content is protected !!