AWS Machine Learning Blog Amazon SageMaker Canvas now supports deploying machine learning (ML) models to real-time inferencing endpoints, allowing you take your ML models to production and drive action based on ML-powered insights. SageMaker Canvas is a no-code workspace that enables analysts and citizen data scientists to generate accurate ML predictions for their business needs. […]Continue reading

AWS Machine Learning Blog Launched in 2021, Amazon SageMaker Canvas is a visual, point-and-click service that allows business analysts and citizen data scientists to use ready-to-use machine learning (ML) models and build custom ML models to generate accurate predictions without the need to write any code. Ready-to-use models enable you to derive immediate insights from […]Continue reading

AWS Machine Learning Blog We’re excited to announce that Amazon SageMaker Canvas now offers a quicker and more user-friendly way to create machine learning models for time-series forecasting. SageMaker Canvas is a visual point-and-click service that enables business analysts to generate accurate machine learning (ML) models without requiring any machine learning experience or having to write a single […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Pipelines is a fully managed AWS service for building and orchestrating machine learning (ML) workflows. SageMaker Pipelines offers ML application developers the ability to orchestrate different steps of the ML workflow, including data loading, data transformation, training, tuning, and deployment. You can use SageMaker Pipelines to orchestrate ML jobs […]Continue reading

AWS Machine Learning Blog Today, we’re pleased to announce the preview of Amazon SageMaker Profiler, a capability of Amazon SageMaker that provides a detailed view into the AWS compute resources provisioned during training deep learning models on SageMaker. With SageMaker Profiler, you can track all activities on CPUs and GPUs, such as CPU and GPU […]Continue reading

AWS Machine Learning Blog We’re excited to announce Amazon SageMaker Data Wrangler support for Amazon S3 Access Points. With its visual point and click interface, SageMaker Data Wrangler simplifies the process of data preparation and feature engineering including data selection, cleansing, exploration, and visualization, while S3 Access Points simplifies data access by providing unique hostnames […]Continue reading

AWS Machine Learning Blog Amazon SageMaker Data Wrangler reduces the time it takes to collect and prepare data for machine learning (ML) from weeks to minutes. You can streamline the process of feature engineering and data preparation with SageMaker Data Wrangler and finish each stage of the data preparation workflow (including data selection, purification, exploration, […]Continue reading

error: Content is protected !!