This AI Paper Demonstrates How You Can Improve GPT-4’s Performance An Astounding 30% By Asking It To Reflect on “Why Were You Wrong?”

MarkTechPost

Source: https://arxiv.org/pdf/2303.11366.pdf
” data-medium-file=”https://www.marktechpost.com/wp-content/uploads/2023/03/min32-300×219.jpeg” data-large-file=”https://www.marktechpost.com/wp-content/uploads/2023/03/min32-1024×747.jpeg”> Source: https://arxiv.org/pdf/2303.11366.pdf
” data-medium-file=”https://www.marktechpost.com/wp-content/uploads/2023/03/min32-300×219.jpeg” data-large-file=”https://www.marktechpost.com/wp-content/uploads/2023/03/min32-1024×747.jpeg”>Decision-making and knowledge-intensive search are two essential skills for large-scale natural language agents in unfamiliar settings. OpenAI’s GPT-3 and Google’s PaLM are just two examples of LLMs that have shown impressive performance on various benchmarks. These models’ human-like abilities to comprehend tasks in specified settings represent a major step forward in natural language processing.

The high syntactic barriers that could lead to false-negative errors in complex tasks can be overcome by agents if they are grounded in natural language. However, due to their large and often unbounded state spaces, natural language RL agents present a significant challenge for learning optimal policies.

Various decision-making approaches have been proposed to help natural language agents make choices in a text-based environment without the benefit of a learned policy. However, the model becomes more prone to hallucinating over longer sequences, reducing the accuracy of these methods as the number of subtasks increases.

Natural language agents can solve tasks more intuitively thanks to the large-scale LLMs’ advanced human-like qualities. Human-in-the-loop (HITL) methods have been widely used to increase performance by rerouting the agent’s reasoning trace after mistakes. Although this method improves performance with little human involvement, it is not autonomous because it requires trainers to monitor the trajectory at each time interval.

Researchers from Northeastern University and the Massachusetts Institute of Technology believe that if given a chance to close the trial-and-error loop independently, LLMs would make good use of self-optimization based on natural language.

To verify their hypothesis, the team implements a self-reflective LLM and a straightforward heuristic for identifying hallucination and ineffective action execution within an LLM-based agent using an approach called Reflexion. They then put the agent through its paces on two different learning-from-error benchmarks—the text-based AlfWorld and the question-answering HotPotQA. As a result, efficiency in decision-making and other knowledge-based tasks is increased. 

this paper demonstrates you can improve gpt4 performance an astounding 30% by asking gpt4 to reflect on “why were you wrong?”, and generate a new prompt for itself taking that reason into account until it is correct.this is how humans learn!https://t.co/sJFOEFCLpq pic.twitter.com/PUbRsVGqY8— Siqi Chen (@blader) March 25, 2023The ReAct problem-solving technique is enhanced by the Reflexion agent’s ability to reflect on its performance, leading to a 97% success discovery rate on the AlfWorld benchmark in just 12 autonomous trials. This is a significant improvement over the 75% accuracy achieved by the base ReAct agent. One hundred questions were taken from HotPotQA, and a ReAct agent based on Reflexion was tested. Compared to a baseline ReAct agent, the agent outperformed it by 17% thanks to the iterative refinement of its content search and extraction based on advice from its memory. Importantly, Reflexion is not built to achieve near-perfect accuracy scores; rather, it aims to show how learning from trial and error can facilitate discovery in tasks and environments previously thought impossible to solve.

The team highlights that their Reflexion can be applied in more challenging problems, such as where the agent needs to learn to generate novel ideas, investigate previously unseen state spaces, and construct more precise action plans based on its experience history.  

Check out the Paper and Github. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 16k+ ML SubReddit, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.
The post This AI Paper Demonstrates How You Can Improve GPT-4’s Performance An Astounding 30% By Asking It To Reflect on “Why Were You Wrong?” appeared first on MarkTechPost.
Go to Source
29/03/2023 – 10:42 /Tanushree Shenwai
Twitter: @hoffeldtcom

Admin

About Admin

As an experienced Human Resources leader, I bring a wealth of expertise in corporate HR, talent management, consulting, and business partnering, spanning diverse industries such as retail, media, marketing, PR, graphic design, NGO, law, assurance, consulting, tax services, investment, medical, app/fintech, and tech/programming. I have primarily worked with service and sales companies at local, regional, and global levels, both in Europe and the Asia-Pacific region. My strengths lie in operations, development, strategy, and growth, and I have a proven track record of tailoring HR solutions to meet unique organizational needs. Whether it's overseeing daily HR tasks or crafting and implementing new processes for organizational efficiency and development, I am skilled in creating innovative human capital management programs and impactful company-wide strategic solutions. I am deeply committed to putting people first and using data-driven insights to drive business value. I believe that building modern and inclusive organizations requires a focus on talent development and daily operations, as well as delivering results. My passion for HRM is driven by a strong sense of empathy, integrity, honesty, humility, and courage, which have enabled me to build and maintain positive relationships with employees at all levels.

    You May Also Like

    error: Content is protected !!